Drucklast Wägezellen V50S

Funktionen & Merkmale

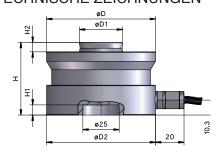
- Material: Legierter Stahl
- Nennlast: 10.000 kg 150.000 kg
- Genauigkeitsklasse 0,03
- Aufbau: laserverschweißt, Schutzklasse: IP66
- ▶ Besonders robust für den harten Dauereinsatz im industriellen Bereich
- ▶ Geringe Konstruktionshöhe der Ring-Torsions-Wägezellen

Anwendungsbereich:

- Maschinenwaagen
- Cargowaagen
- Silo- und Tankwägung
- Behälterwaagen
- Coilwaagen
- Schwerlastwaagen
- Kraftmessungen in der Prozessindustrie.

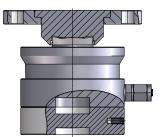
Drucklast Wägezellen V50S

Ringtorsions-Wägezellen zum Einsatz in rauer Industrieumgebung

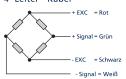

Die V50S Ringtorsions-Wägezellen werden zur Messung von Druckkräften in den verschiedensten Industrieanwendungen verwendet. Die Wägezellen sind symmetrisch aufgebaut und sehr kompakt, so das sie auch in rauer Industrieumgebung präzise Messungen ermöglicht.

Die Kräfte werden immer zentrisch in die Messdosen eingeleitet. Die Hochlastwägezelle ist gefertigt aus hochwertigem legiertem Werkzeugstahl, laserverschweißt und erfüllt die Anforderungen der Schutzklasse IP66.

TECHNISCHE DETAILS


Genauigkeitsklasse nach OIML R 60		G3		
Nennlast (E _{max})	kg	10.000, 22.000, 33.000, 47.000, 68.000, 100.000, 150.000		
Anzahl der Teilungswerte (n _{LC})		3000		
Nennkennwert (C _n) / Kennwerttoleranz	mV/V	2,85 ± 0,01		
Kennwert vom relativen Mindestteilungswert d. WZ $(Y = E_{max} / v_{min})$	% von Emax	10 000		
Mindestvorlast (E _{min})		0		
Grenzlast (E _L) Bruchlast (E _d)	% von Emax	150 200		
Empfohlene Speisespannung (U _{rel}) Maximal zulässige Speisespannung (B _U)	V	5 - 12 15		
Nullabgleich	% v. C _n	≤1%		
Eingangswiderstand (R_{LC}) bei Referenztemperatur Ausgangswiderstand (R_{o}) bei Referenztemperatur	Ω	1450 ± 10 1402 ± 5		
Isolationswiderstand	ΜΩ	> 5 000		
Nenntemperaturbereich (B _T)	°C	- 10 + 40		
Schutzart nach (DIN 40.050 / EN 60529)		IP66		
Kabellänge		16 m, 12 m		
Werkstoff		Legierter Stahl		

► TECHNISCHE ZEICHNUNGEN



Last	D	D1	D2	Н	H1	H2
10 - 22 t	75	30	75	50	7	6,5
33 t	95	40	95	65	7	10
47 t	130	60	130	75	7	14
68 t	130	60	130	85	7	14
100 t	150	70	150	90	7	16
150 t	150	70	150	100	7	16

Einbaubeispiel

Elektrischer Anschluss 4 -Leiter - Kabel

Alle Angaben in mm | Technische Änderungen vorbehalten