

Zug- und Druckkraftsensor F10N

Funktionen & Merkmale

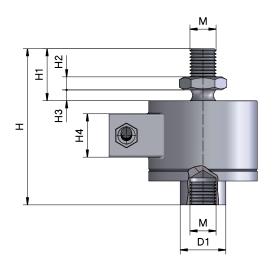
- Material: Edelstahl
- Nennlast: 500 1.000 kg
- Aufbau: Das Messelement ist laserverschweißt, Schutzklasse: IP66
- ▶ Besonders robust für den harten Dauereinsatz im industriellen Bereich
- ► Krafteinleitung: Außengewinde / Auflagefläche mit Gewindebohrungen
- Kalibrierung in N oder kg möglich
- Kompatibel mit anderen Herstellern
- Schwerpunktanwendung: Zugbelastung

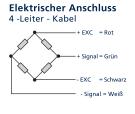
Anwendungsbereich:

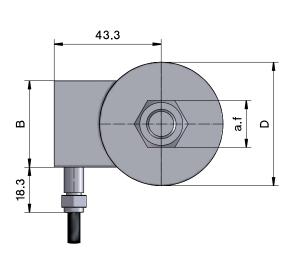
- Behälterwaagen
- Band- und Dosierwaagen
- Hybridwaagen
- Überwachung von Fügekräften
- Zugkraftmessungen

Zug- und Druckkraftsensor F10N

Zug- und Druckkraftsensoren für industrielle Anwendungen


Der kompakte Kraftaufnehmer F10N wurde speziell für die Messung statischer und dynamischer Zug- und Druckbelastungen konzipiert. Das zentrisches Gewinde in oberen und die Bohrung im unterem Teil der Wägezelle sorgt für optimale Krafteinleitung in Zug- oder Druckrichtung. Die Wägezellen sind aus hochwertigem Edelstahl gefertigt und liefern auch im Langzeiteinsatz in rauer Industrieumgebung äußerst präzise


und reproduzierbare Messergebnisse. Die Wägezelle ist laserverschweißt und erfüllt die Anforderungen der Schutzklasse IP66. Für die Messung von Kräften werden diese Wägezellen auch sehr häufig in der physikalischen Einheit Newton kalibriert und als Kraftaufnehmer eingesetzt.


TECHNISCHE DETAILS

Genauigkeitsklasse nach OIML R 60		0,03
Genaulgkeitsklasse nach Olime in oo		0,03
Nennlast (E _{max})	kg	500, 1.000
Anzahl der Teilungswerte (n _{LC})		3000
Nennkennwert (C _n) / Kennwerttoleranz	mV/V	2,0
Kennwerttoleranz:	mV/V	± 0,01
Mindestvorlast (E _{min})		0
Grenzlast (E _L)	% von Emax	150
Bruchlast (E _d)		200
Empfohlene Speisespannung (U _{ref})	V	5 - 12
Maximal zulässige Speisespannung (B _U)		15
Nullabgleich	% v. C _n	≤±1%
Eingangswiderstand (R _{1 c}) bei Referenztemperatur	Ω	400 ± 10
Ausgangswiderstand (R _o) bei Referenztemperatur		352 ± 3
Isolationswiderstand	ΜΩ	> 5 000
Nenntemperaturbereich (Β _τ)	°C	- 10 + 40
Schutzart nach (DIN 40.050 / EN 60529)		IP66
Kabellänge		5 m
Werkstoff		Edelstahl

TECHNISCHE ZEICHNUNGEN

